
Efficient Evaluation of Multiple Queries on
Streamed XML Fragments

Huan Huo, Rui Zhou, Guoren Wang, Xiaoyun Hui,
Chuan Xiao, and Yongqian Yu

Institute of Computer System, Northeastern University, Shenyang, China
wanggr@mail.neu.edu.cn

Abstract. With the prevalence of Web applications, expediting mul-
tiple queries over streaming XML has become a core challenge due to
one-pass processing and limited resources. Recently proposed Hole-Filler
model is low consuming for XML fragments transmission and evaluation,
however existing work addressed the multiple query problem over XML
tuple streams instead of XML fragment streams. By taking advantage of
schema information for XML, this paper proposes a model of tid+ tree
to construct multiple queries over XML fragments and to prune off du-
plicate and dependent operations. Based on tid+ tree, it then proposes
a notion of FQ-Index as the core in M-XFPro to index both multiple
queries and XML fragments for processing multiple XPath queries in-
volving simple path and twig path patterns. We illustrate the effective-
ness of the techniques developed with a detailed set of experiments.

1 Introduction

The recent emergence of XML [1]as a de facto standard for information repre-
sentation and data exchange over the web has led to an increased interest in
using more expressive subscription/filtering mechanisms that exploit both the
structure and the content of XML documents. Evaluating XML queries, such as
XPath [2] and XQuery [3], is thus widely studied both in traditional database
management systems and in stream model for web applications. Figure 1 gives
an XML document and its DOM tree, which acts as an example of our work.

Recently, many research works [4–10] focus on answering queries on streamed
XML data, which has to be analyzed in real-time and by one pass. In the push-
based model [4,5], XML streams are broadcasted to multiple clients, which must
evaluate continuous, sophisticated queries (as opposed to simple, single path
specifications) with limited memory capacity and processing power. In the pull-
based model [6–10], such as publish-subscribe or event notification systems, XML
streams are disseminated to subscribers, but a larger number of registered queries
pose heavy workload on the server. Hence, expediting multiple queries on XML
streams is the core technical challenge.

In order to reduce processing overhead, Hole-Filler model is proposed in [11].
In the model, a hole represents a placeholder into which another rooted subtree
(a fragment), called a filler, could be positioned to complete the tree. In this

<
c
o
m
m
o
d
i
t
i
e
s
>

<
v
e
n
d
o
r
>

<
n
a
m
e
>
W
a
l
-
M
a
r
t
<
/
n
a
m
e
>

<
i
t
e
m
s
>

<
i
t
e
m
>

<
n
a
m
e
>
P
D
A
<
/
n
a
m
e
>

<
m
a
k
e
>
H
P
<
/
m
a
k
e
>

<
m
o
d
e
l
>
P
a
l
m
P
i
l
o
t
<
/
m
o
d
e
l
>

<
p
r
i
c
e

c
u
r
r
e
n
c
y
=
"
U
S
D
"
>
3
1
5
.
2
5
<
/
p
r
i
c
e
>

<
/
i
t
e
m
>

.
.
.

<
/
i
t
e
m
s
>

<
/
v
e
n
d
o
r
>

.
.
.

<
/
c
o
m
m
o
d
i
t
i
e
s
>

1

c
o
m
m
o
d
i
t
i
e
s

2

v
e
n
d
o
r

3

n
a
m
e

4

i
t
e
m
s

6

n
a
m
e

7

m
a
k
e

8

m
o
d
e
l

9

p
r
i
c
e

5

i
t
e
m

c
u
r
r
e
n
c
y

W
a
l
-
M
a
r
t

U
S
D
P
D
A
 H
P
 P
a
l
m
P
i
l
o
t
 3
1
5
.
2
5

.
.
.
.
.
.
 9
3

i
t
e
m

……

v
e
n
d
o
r

n
a
m
e
 i
t
e
m
s

C
a
r
r
e
f
o
u
r

3
1
5
 3
1
6

3
1
4

.
.
.
.
.
.

.
.
.
.
.
.

Fig. 1. An XML Document and its DOM Tree

way, infinite XML streams turn out to be a sequence of XML fragments, and
queries on parts of XML data require less memory and processing time, without
having to wait for the entire XML document to be received and materialized.
Furthermore, changes to XML data may pose less overhead by sending only
fragments corresponding to the changes, instead of sending the entire document.

However, to the best of our knowledge, there is no work for evaluating mul-
tiple queries on streamed XML fragments so far. In XFrag [4] and XFPro [12],
XML fragments can only be evaluated under simple, single queries. While other
research work [6–10] consider problems on a stream of XML tuples, not XML
fragments, and can not avoid “redundant” operations caused by fragments.

In this paper, we present an efficient framework and a set of techniques
for processing multiple XPath queries over streamed XML fragments. As com-
pared to the existing work on supporting XPath/XQuery over streamed XML
fragments, we make the following contributions: (i)we propose techniques for en-
abling the transformation from multiple XPath expressions to optimized query
plan. We model the query expressions using tid+ tree and apply a series of prun-
ing policies, which enable further analysis and optimizations by eliminating the
“redundant” path evaluations. (ii)based on tid+ tree, we present a novel index
structure, termed FQ-Index, which supports the efficient processing of multiple
queries (including simple path queries and twig path queries) for streamed XML
fragments by indexing both the queries and the fragments. (iii)based on FQ-
Index, we address the main algorithms of query evaluation in M-XFPro, which
is able to both reduce the memory cost as well as avoid redundant matchings
by recording only query related fragments. Note that, we assume the query ends
cannot reconstruct the entire XML data before processing the queries.

The rest of this paper is organized as follows. Section 2 introduces Hole-Filler
model as the base for our XML fragments. Section 3 gives a detailed statement of
our multiple query processing framework. Section 4 shows experimental results
from our implementation and reflects the processing efficiency of our framework.
Our conclusions are contained in Section 5.

2 Model for Streamed Fragmented XML Data

In our approach, we adopt the hole-filler model [11] to correlate XML fragments
with each other. We assume that XML stream begins with finite XML documents
and runs on as and when new elements are added into the documents or updates
occur upon the existing elements.

Given an XML document tree Td = (Vd, Ed, Σd, rootd, Did), a filler Tf =
(Vf , Ef , Σf , rootf , fid, tsid) is a subtree of XML document associating a fid
and a tsid, where Vf , Ef , Σf is the subset of node set Vd, edge set Ed and
element type set Σd respectively, and rootf (∈ Vf)is the root element of the
subtree; a hole H is an empty node v(∈ Vd) assigned with a unique hid and a
tsid, into which a filler with the same fid value could be positioned to complete
the tree. Note that the filler can in turn have holes in it, which will be filled
by other fillers. We can reconstruct the original XML document by substituting
holes with the corresponding fillers at the destination as it was in the source.
In this paper, we assume that XML documents have been fragmented already.
Fragmenting algorithm is stated in [13] and omitted here. Figure 2 gives two
fragments of the document in Figure 1.

F
r
a
g
m
e
n
t

1
:

<
c
o
m
m
o
d
i
t
i
e
s

f
i
l
l
e
r

i
d
=
"
0
"

t
s
i
d
=
"
1
"
>

<
v
e
n
d
o
r
>

<
n
a
m
e
>
W
a
l
-
M
a
r
t
<
/
n
a
m
e
>

<
i
t
e
m
s
>

<
s
t
r
e
a
m
:

h
o
l
e

i
d
=
"
1
0
"

t
s
i
d
=
"
5
"

/
>

<
s
t
r
e
a
m
:

h
o
l
e

i
d
=
"
2
0
"

t
s
i
d
=
"
5
"

/
>

.
.
.

<
/
v
e
n
d
o
r
>

.
.
.
.

<
/
c
o
m
m
o
d
i
t
i
e
s
>

F
r
a
g
m
e
n
t

2
:

<
s
t
r
e
a
m
:

f
i
l
l
e
r

i
d
=
"
1
0
"

t
s
i
d
=
"
5
"
>

<
i
t
e
m
>

<
n
a
m
e
>
P
D
A
<
/
n
a
m
e
>

<
m
a
k
e
>
H
P
<
/
m
a
k
e
>

<
m
o
d
e
l
>
P
a
l
m
P
i
l
o
t
<
/
m
o
d
e
l
>

<
p
r
i
c
e

c
u
r
r
e
n
c
y
=
"
U
S
D
"
>
3
1
5
.
2
5
<
/
p
r
i
c
e
>

<
/
i
t
e
m
>

<
/
s
t
r
e
a
m
:

f
i
l
l
e
r
>

Fig. 2. XML Document Fragments

In order to summarize the structure of XML fragments, tag structure [11]
is exploited to provide structural information (including fragmentation informa-
tion) for XML and capture all the valid paths. A tag structure TS = (Vt, Et,
roott, Σt, TY PEt) is itself structurally a valid XML fragment with the highest
priority, where Vt is a set of tag nodes in XML document, Et is a set of edges,
Σt is a set of tsids identifying the tag nodes in XML document, and TY PEt is a
set of tag node type. Tag structure can be generated according to XML Schema
or DTD, and also can be obtained when fragmenting an XML document with-
out DTD. The DTD and the corresponding tag structure of the XML document
(given in Figure 1) are depicted in Figure 3.

3 M-XFPro Query Handling

Based on the Hole-Filler model, we have proposed M-XFPro, a system aimed
at providing efficient evaluation for multiple queries over streamed XML frag-
ments. In this section, we first introduce tid+ tree for rewriting the queries for

1

c
o
m
m
o
d
i
t
i
e
s

2

v
e
n
d
o
r

3

n
a
m
e

4

i
t
e
m
s

*

+

6

n
a
m
e

7

m
a
k
e

8

m
o
d
e
l

9

p
r
i
c
e

5

i
t
e
m

<
s
t
r
e
a
m
:

s
t
r
u
c
t
u
r
e
>

<
t
a
g

n
a
m
e
=
"
c
o
m
m
o
d
i
t
i
e
s
"

i
d
=
"
1
"

F
i
l
l
e
r
=
"
t
r
u
e
"
>

<
t
a
g

n
a
m
e
=
"
v
e
n
d
o
r
"

i
d
=
"
2
"

F
i
l
l
e
r
=
"
t
r
u
e
"
>

<
t
a
g

n
a
m
e
=
"
n
a
m
e
"

i
d
=
"
3
"

/
>

<
t
a
g

n
a
m
e
=
"
i
t
e
m
s
"

i
d
=
"
4
"
>

<
t
a
g

n
a
m
e
=
"
i
t
e
m
"

i
d
=
"
5
"

F
i
l
l
e
r
=
"
t
r
u
e
"
>

<
t
a
g

n
a
m
e
=
"
n
a
m
e
"

i
d
=
"
6
"

/
>

<
t
a
g

n
a
m
e
=
"
m
a
k
e
"

i
d
=
"
7
"

/
>

<
t
a
g

n
a
m
e
=
"
m
o
d
e
l
"

i
d
=
"
8
"

/
>

<
t
a
g

n
a
m
e
=
"
p
r
i
c
e
"

i
d
=
"
9
"

/
>

<
/
t
a
g
>

<
/
t
a
g
>

<
/
t
a
g
>

<
/
t
a
g
>

<
/
s
t
r
e
a
m
:

s
t
r
u
c
t
u
r
e
>

Fig. 3. Tag Structure of Hole-Filler Model

XML fragments, and describe the pruning policies to eliminate “redundant”
path evaluations. Then we present our novel FQ-Index for processing streamed
XML fragments based on optimized tid+ tree. We present the main matching
algorithms for query handling with FQ-Index at last.

3.1 Tid+ Tree Construction

In our earlier framework [12], we propose tid tree to represent the structural
patterns in an XPath query. Each navigation step in an XPath is mapped to a
tree node labelled with a tag code, which encodes the tsid and “TYPE” together.
For “Filler = true”, we set the end of the tag code with “1”, otherwise we set
it with “0”. As for tsid, we separate it from the “TYPE” code by a dot. By
checking the end of the code, we can easily tell subroot nodes (i.e. the root of a
filler) from subelement nodes (i.e. the node that locates in a filler but is not the
root of the subtree).

We expand the concept of tid tree into tid+ tree to represent multiple query
expressions and enable further analysis and optimizations on query operations.

Given a collection of XPath expressions P = {p1, p2, · · · , pn}, we map multi-
ple queries into a single tree, noted as tid+ tree, by defining roott as a special root
node, which allows for conjunctive conditions at the root level. Parent-child rela-
tionship is represented by a single arrow, while ancestor-descendant relationship
is represented by a double arrow. And the output of each query qi is depicted
by a single arrow and marked with the ID of qi. In order to distinguish between
the nodes that represent a tag code and the nodes that represent an atomic
predicate, we represent nodes of tag code with circles and values of predicate
with rectangles. The operators (such as <, >, ≥, ≤, =) and boolean connectors
are represented with diamonds. Note that the common prefixes of all the queries
are shared.

Figure 4 shows an example of such a tid+ tree, representing three queries on
the XML document described in Section 1, where Query 1 and Query 2 share the
common prefix “/commondities/vendor” (i.e./1.1/1.2). Since “name” in Query

2 corresponds to two tsids in the tag structure, we enumerate all the possible
tsids in the tid+ tree such that Query 2 has two output arrows.

1
.
1

2
.
1

4
.
0

5
.
1

9
.
0

6
.
0

=

Q
1
=
/
c
o
m
m
o
d
i
t
i
e
s
/
v
e
n
d
o
r
/
i
t
e
m
s
/
i
t
e
m
[
n
a
m
e
=
"
P
D
A
"
]
/
p
r
i
c
e

Q
2
=
/
c
o
m
m
o
d
i
t
i
e
s
/
v
e
n
d
o
r
/
/
n
a
m
e

Q
3
=
/
/
v
e
n
d
o
r
/
*
/
*
/
m
a
k
e

6
.
0
3
.
0

*

7
.
0

*

"
P
D
A
"

r
o
o
t

{
Q
1
}
 {
Q
2
}
 {
Q
2
}
 {
Q
3
}

2
.
1

Fig. 4. Tid+ Tree

Since tid+ tree is the base for FQ-Index to install multiple XPath expressions
into the indexing structure, the optimization of tid+ tree impacts both the space
and performance of the index. We now introduce two kinds of optimizations on
tid+ tree to eliminate the redundant operations as early as possible.

Duplication Pruning Given an XPath p, we define a simple subexpression s
of p if s is equal to the path of the tag nodes along a path < v1, v2, · · · vn > in
the tid tree of p, such that each vi is the parent node of vi+1(1 ≤ i < n) and the
label of each vi (except perhaps for v1) is prefixed only by “/”.

Definition 1. Given a collection of XPath expressions P = {p1, p2, · · · , pn},
subexpression s is a common subexpression if more than one tid tree of pi con-
tains s. If a common subexpression is also a simple subexpression, we define it
as a simple common subexpression. A common subexpression s is defined as a
maximal common subexpression if no other longer common subexpression in the
tid+ tree of P contains s.

Common subexpressions degrades the performance significantly, especially
when the workload has many similar queries. Since the common prefixes of all
the queries are shared in tid+ tree, we consider optimizing tid+ tree by grouping
all the common subexpressions in the structure navigation.

In order to extract the common subexpressions, we have to find out the
structural relationship shared among the queries. By taking advantage of tag
structure, we can replace “//” in tid+ tree with the corresponding structure
consisting of “/” and expand “*” in tid+ tree to specify query execution. As for
twig pattern query, we add the subroot nodes involved in the branch expression
into the tid+ tree if the testing node and the branch expression belong to different
fragments. In this way, common subexpressions turn out to be simple common
subexpressions, and all the possible duplicated expressions can be pruned off.

Figure 5(a) presents the tid+ tree in Figure 4 after eliminating “//” and
“*” based on tag structure, where the dashed regions enclose the subexpression

(i.e. /1.1/2.1/4.0/5.1) shared by Query 2 and Query 3 while the solid regions
enclose the subexpression (i.e. /1.1/2.1/4.0) shared by Query 1, Query 2 and
Query 3. Since tid node 5.1 in Query 1 has a predicate, which is not included in
the other two queries, we treat the tid node 5.1 in Query 1 as a different node
and exclude it in the common subexpression. Note that Figure 5(a) captures all
the maximal common subexpressions among the queries. The optimized tid+
tree after pruning off the duplicated subexpressions is presented in Figure 5(b).

1
.
1

2
.
1

4
.
0

5
.
1

9
.
0

6
.
0

=

3
.
0

6
.
0

4
.
0

7
.
0

5
.
1

"
P
D
A
"

r
o
o
t

{
Q
1
}
 {
Q
2
}
{
Q
2
}
 {
Q
3
}

2
.
1

1
.
1

4
.
0

5
.
1

1
.
1

2
.
1

4
.
0

5
.
1

9
.
0

6
.
0

=

3
.
0

"
P
D
A
"
 {
Q
1
}
 {
Q
2
}

{
Q
2
}

7
.
0

{
Q
3
}

r
o
o
t

5
.
1

6
.
0

(
a
)

C
o
m
m
o
n

S
u
b
e
x
p
r
e
s
s
i
o
n
s

i
n

T
i
d
+

T
r
e
e
 (
b
)

T
i
d
+

T
r
e
e

a
f
t
e
r

D
u
p
l
i
c
a
t
i
o
n

P
r
u
n
i
n
g

Fig. 5. Duplication Pruning on Tid+ Tree

Dependence Pruning Before we describe the dependence pruning policy for
tid+ tree, we first introduce some definitions of operation dependence.

Definition 2. Given any pair of nodes in a tid+ tree < n1,n2 >, if the query
result of n2 is valid only if the query result of n1 is valid, n2 is defined as
dependent on n1. We use a directed edge e = (n1, n2) to imply the dependence
between n1 and n2.

Definition 3. Given any pair of nodes in a tid+ tree < n1,n2 >, we say that
n2 is subsumption dependent on n1 if: (i) n2 is dependent on n1, and (ii) the
query result of n2 is a subset of the query result of n1.

In streaming XML fragment model, operation dependence usually occurs
when the query results to preceding query node and successive query node are
in the same fragment(here we are not considering predicates), since the fragments
with the same tsid share the same structure so that any fragment matching the
preceding node also matches the successive one. In most cases, the dependence
operation can be eliminated by removing the successive query nodes.

When the query node involve predicates, if the result set of predicate p2 is
a subset of that of predicate p1, we refer to p2 as subsumption dependent on
p1. Subsumption-free queries are intuitively queries that do not contain “redun-
dancies”. Some queries can be rewritten to be subsumption-free, by eliminating
redundant portions.

Much of our analysis focuses on pruning off operation dependencies on tid
nodes caused by fragmentation to eliminate “redundant” structural evaluations.

Since tag structure guarantees that the fragments with the same tsid share the
same structure, we keep all the subroot nodes and delete the subelement nodes
which have no predicates and are not the leaf nodes in tid+ tree. According to tag
code, subroot nodes ended with “1” are kept in the tid+ tree while subelement
nodes ended with “0” and without predicate nodes in their children are removed.
Thus the original tid+ tree becomes an optimized tid+ tree.

Figure 6(a) shows the operation dependence in the optimized tid+ tree in
Figure 5(b), where tid node 4 depends on tid node 2 and is referred to as a
dependent node. We use dashed arrows to represent operation dependencies,
and dashed rectangles for dependent nodes. Figure 6(b) shows the optimized
tid+ tree after pruning off the operation dependencies.

1
.
1

2
.
1

4
.
0

5
.
1

9
.
0

6
.
0

=

3
.
0

"
P
D
A
"

{
Q
1
}
 {
Q
2
}

{
Q
2
}

7
.
0

{
Q
3
}

r
o
o
t

5
.
1

6
.
0

1
.
1

2
.
1

5
.
1

9
.
0

6
.
0

=

3
.
0

"
P
D
A
"

{
Q
1
}
 {
Q
2
}

{
Q
2
}

7
.
0

{
Q
3
}

r
o
o
t

5
.
1

6
.
0

(
a
)

T
h
e

D
e
p
e
n
d
e
n
c
e

N
o
d
e

i
n

T
i
d
+

T
r
e
e
 (
b
)

T
h
e

T
i
d
+

T
r
e
e

a
f
t
e
r

D
e
p
e
n
d
e
n
c
e

P
r
u
n
i
n
g

Fig. 6. Dependence Pruning on Tid+ Tree

3.2 FQ-Index Scheme

Our FQ-Index is a hybrid index structure, which indexes both the queries and
fragments on the basis of optimized tid+ tree. An FQ-Index consists of two key
components: (1) a query index (denoted by QI), constructed by tid+ tree to
facilitate the detection of query matchings in the input XML fragments; and (2)
a filler table (denoted by FT), which stores the information about each XML
fragment. Both of the components share a hash table for subroot nodes in tid+
tree. We now describe each of these two components in detail.

Query Index Query index is generated from optimized tid+ tree before pro-
cessing to keep track of the query steps that are supposed to match next. Let
P = {p1, p2, . . . , pn} denote the set of XPath expressions, and T = {t1, t2, . . . , tn}
denote the subroot nodes in optimized tid+ tree. Query index QI of P for each
ti is a 4-tuple list. Each item in the query list for ti is a 4-tuple (query id set,
predecessor, successor, predicate), denoted as q-tuple, where:

– Query id set represents the queries in set P that share the same predicate,
predecessor and successor.

– Predecessor refers to the tag code of the fragment in tid+ tree corresponding
to the parent node of qi. (Predecessor = NULL if qi is a root node.)

– Successor refers to the tag code of the fragment in tid+ tree corresponding
to the child node of qi. (Successor = NULL if qi is the end of the query.)

– Predicate is the branch expression of twig path queries in tid+ tree.

Predecessor and successor in each item keep track of the query steps, while
predicate keeps the reference of branch expressions. With the help of query id
set, we can avoid duplicate evaluations shared by multiple queries. Since subroot
nodes indicate the tsids of the fragments involved in the queries, we can directly
access the relative query steps by the corresponding entry of the hash table
when a fragment arrives. Figure 7 presents the query index converted from the
optimized tid+ tree(“all” represents all of the queries in set P) in Figure 6(b).

t
s
i
d
=
1

f
i
d
=
0

h
i
d

(
1
,

2
1
,
4
1
)

h
i
d

(
2
,
3
,
.
.
.
,
2
0
)

t
s
i
d
=
2

f
i
d
=
1

:

:

H
A
S
H

T
A
B
L
E
 Q
U
E
R
Y

I
N
D
E
X

1
.
1

2
.
1

5
.
1

(
a
l
l
,

n
u
l
l
,

2
.
1
,

n
u
l
l

)

(
q
1
,

2
.
1
,

9
.
0
,

6
.
0
=
"
P
D
A
"
)

(
q
2
,

1
.
1
,
3
.
0
,

n
u
l
l

)
(
a
l
l
,

1
.
1
,

5
.
1
,
n
u
l
l

)

(
q
2
,

2
.
1
,

6
.
0
,
n
u
l
l
)
 (
q
3
,

2
.
1
,

7
.
0
,

n
u
l
l
)
Q

F

F

F

Q

Q

O
u
t
p
u
t
:

Q
1
:
{
}

Q
2
:
{
n
a
m
e
/
t
e
x
t
(
)
}

Q
3
:
{
}

0
 1
,
2
1
,
4
1
 <
a
l
l
,
T
>

2
,
3
,
.
.
.
,
2
0
1
 <
a
l
l
,
T
>

Fig. 7. FQ-Index of Tid+ Tree

Filler Table As fragments in the original document may arrive in any order
and query expressions may contain predicates at any level in the XML tree, it is
necessary to keep track of the parent-child links between the various fragments.
We maintain the fragments’ information in filler table at each entry of the hash
table when processing arrived fragments. Since the structural information corre-
sponds to a small part of the actual data in the XML fragment, the rest of which
is not relevant in producing the result, we discard the fragments corresponding
to intermediate steps to save space cost.

The filler table FT contains one row for each fragment. Each row in FT is
denoted as a f-tuple (fillerid, {holeid}, {< qi, tag >}), in which tag can be set
to true, false, undecided (⊥), or a result fragment corresponding to qi in set
P . While the former three values are possible in intermediate steps that do not
produce a result, the latter is possible in the terminal steps in the tid+ tree
branch. Figure 7 shows the construction of filler table.

With the hash table, the filler table and the query index cooperate together
as FQ-Index. Taking advantage of the query index, we can quickly inquire the
parent fragment by matching the same holeid in the predecessor’s FT . In this
way, filler table enhances the performance by only maintaining the information

of fragments that will contribute to the results. Thus FQ-Index efficiently sup-
ports the online evaluation of multiple queries over streamed XML fragments,
including both simple path queries and twig pattern queries.

3.3 Query Handling

In this section, we address the main algorithms of query evaluation in M-XFPro.
The basic idea of the matching algorithms is as follows. We use the query index
QI to detect the occurrence of matching tsids as the input fragments stream
in, since before we record the structrual information of a fragment, it needs to
verify if the preceding operation has excluded its parent fragment due to either
predicate failure or due to exclusion of its ancestor.

For example, Query 1: /commodities/vendor[name=“Wal-Mart”]//item [ma-
ke = “HP”] is a twig pattern query with two atomic predicates, while Query
2: /commodities/vendor[name=“Price-Mart”]//item[make=“IBM”] is a similar
query just with different predicates. When the “commodities” fragment with
tsid “1”, filler id “0” and hole ids “1, 21, 41” arrives, the FT to the en-
try 1 is updated as (0, {1, 2, 41}, {< all, T >}). Note that, the “commodities”
filler can be discarded as it is no more needed to produce the result and the
hole filler association is already captured. This results in memory conserva-
tion on the fly. When the “vendor” fragment with tsid “2”, fillerid “1”, holeid
“2, 3, · · · , 20” and “name=Wal-Mart” arrives, the FT to the entry 2 is updated
as (1, {2, 3, · · · , 20}, {< q2, T >, < q3, F >}). When the “item” fragment with
fillerid “2” arrives, only after determine that the filler matches the predicate of
Query 1 [make = “HP ′′], the fragment can be regarded as the query result of
Query 1. Taking advantage of QI, it won’t be mixed up with the result of Query
2 [make = “IBM ′′] since the Predecessor has excluded its parent fragments.

Algorithm 1 startElement()
1: if (isFragmentStart()==true) then
2: fid=getFid(); tsid=getTsid();
3: if (hashFindEntry(tsid)!=null) then
4: fillQueryFT(tsid,createFTuple(fid));

// generate an f-tuple and fill it into the corresponding queries’ lists in FT ;
5: end if
6: end if
7: if (isHoleTag()==true) then
8: hid=getHid(); tsid=getTsid();
9: addQueryFT(tsid,hid);

// find the entry by tsid and fill hid into the corresponding f-tuple;
10: else if (isElementTag()==true) then
11: tsid=getTsid();
12: if (isQueryRelatedTag()==true) then
13: relevantTag==true;
14: end if
15: end if

We implement the callback functions startElement() and endElement() of
SAX interface when parsing each XML fragment. In algorithm 1, if an element
is a subroot node, the information of the corresponding fragment in which it
falls will be captured and loaded into FT. Similar operation is performed when
encountering the element representing a hole. The variable relevantTag will be
set to true if the element is query related. In algorithm 2, parent fragment and
predicate fragment of the filler containing the element are inquired, and tag
value of the corresponding f-tuple is set to true in case both kinds of the above
fragments are valid. Child fragments need to be trigged as well, for some early
arrived fragments may be set to “⊥” and waiting for their parent fragments.

Algorithm 2 endElement()
1: if (isFragmentEnd()==true) then
2: // ft is the corresponding f-tuple of the current fragment
3: if (findParentFTuple(ft)!=null) then
4: ft.parentValue=parentFTuple(ft).parentValue;
5: end if
6: if (findTwigPredicate(ft)!=null) then
7: ft.conditionValue=conditionFTuple(ft).conditionValue;
8: end if
9: if (findChildFTupleList(ft)!=null) then

10: for each child f-tuple ftc of ft do
11: ftc.parentValue=ft.parentValue && ft.conditionValue;
12: end for
13: end if
14: end if

4 Performance Evaluation

In this section, we present the results of performance evaluation of various algo-
rithms over queries with different types, depths and document sizes on the same
platform. We consider the following algorithms: (1) M-XFPro, (2)Du-XFPro, i.e.
M-XFPro based on tid+ tree without dependence pruning, (3)De-XFPro, i.e. M-
XFPro based on tid+ tree without duplication pruning. All the experiments are
run on a PC with 2.6GHz CPU, 512M memory. Data sets are generated by the
xmlgen program [14]. We have written an XML fragmenter that fragments an
XML document into filler fragments to produce an XML stream, based on the
tag structure defining the fragmentation layout. And we implemented a query
generator that takes the DTD as input and creates sets of XPath queries of
different types and depths.

In figure 8(a) three kinds of processing strategies over various query num-
bers are tested and compared. The numbers of queries in each set are 1,2,10
respectively. From the result, we can conclude that dependence pruning and du-
plication pruning in M-XFPro play an important role in efficiently evaluating

multiple queries. In the following experiments, we fix the query number and
test other properties of the queries. Figure 8(b) shows the performance on dif-
ferent types of queries: (1)simple path queries only involving “/”, denoted as
Q1 (2)simple path queries involving “*” or “//”, denoted as Q2 (3)twig pattern
queries with value predicates, denoted as Q3. We can see that for any query
type, M-XFPro outperforms its counterparts, and query types do not bring in
exceptions, i.e. query performance doesn’t vary much on different query types.
For simplicity, but without losing generality, we only test twig queries in the next
two set of experiments. Figure 8(c) shows the impacts of various query depths.
Considering the depth of the XML documents generated by xmlgen, we design
three query sets of depth 3, 5 and 7 respectively. As is shown in the figure, when
the depth increases, the processing time of De-XFPro and Du-XFPro increases
due to the increased path steps. While with duplication and dependence prun-
ing, M-XFPro greatly reduces path steps, furthermore time cost of deep queries
is much less than short queries, since fragment processing is much faster. Figure
8(d) shows the influence of different document size: 5M, 10M and 15M.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

5
 10 15
(d) Document Size

E
l
a
p
s
e

T
i
m
e

(
m
s
)

De-XFPro

Du-XFPro

M-XFPro

0

50000

100000

150000

200000

250000

300000

350000

400000

3
 5
 8

(c) Depth of Queris

E
l
a
p
s
e

T
i
m
e

(
m
s
)

De-XFPro Du-XFPro M-XFPro

0

200000
400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

1
 2
 10
(a) Number of Queries

E
l
a
p
s
e

T
i
m
e

(
m
s
)

De-XFPro

Du-XFPro

M-XFPro

0

50000

100000

150000

200000

250000

300000

350000

400000

Q1 Q2 Q3
(b) Differen Type of Queries

E
l
a
p
s
e

T
i
m
e

(
m
s
)

De-XFPro Du-XFPro M-XFPro

Fig. 8. Experimental Results

5 Conclusions

In this paper, we have proposed a framework and a set of techniques for pro-
cessing multiple XPath queries over streamed XML fragments. We first model
the multiple queries into tid+ tree, which helps to transform queries on element
nodes to queries on XML fragments and serves as the base for analyzing “redun-
dant” operations caused by common subexpression and operation dependence.
Based on optimized tid+ tree after duplication pruning and dependence prun-
ing, FQ-Index is proposed to index both the queries and fragments by sharing a

hash table for tid nodes, which supports not only simple path queries, but also
twig pattern queries. Our experimental results over multiple XPath expressions
with different properties have clearly demonstrated the benefits of our approach.

Acknowledgments This research was partially supported by the National Nat-
ural Science Foundation of China (Grant No. 60273079 and 60573089) and Spe-
cialized Research Fund for the Doctoral Program of Higher Education (SRFDP).

References

1. W3C Recommendation: Extensible Markup Language (XML) 1.0 (Second Edi-
tion). (2000) http://www.w3.org/TR/REC-xml.

2. W3C Working Draft: XML Path Languages (XPath), ver 2.0. (2001) Tech. Re-
port WD-xpath20-20011220, W3C, 2001, http://www.w3.org/TR/WD-xpath20-
20011220.

3. W3C working draft: XQuery 1.0: An XML Query Language. (2001) Technical
Report WD-xquery-20010607, World Wide Web Consortium.

4. Bose, S., Fegaras, L.: XFrag: A query processing framework for fragmented XML
data. In: Eighth International Workshop on the Web and Databases (WebDB
2005), Baltimore, Maryland (June 16–17,2005)

5. Bose, S., Fegaras, L., Levine, D., Chaluvadi, V.: A query algebra for fragmented
XML stream data. In: Proceedings of the 9th International Conference on Data
Base Programming Languages, Potsdan, Germany (September 6–8, 2003)

6. Altmel, M., Franklin, M.: Efficient filtering of XML documents for selective dis-
semination of information. In Abbadi, A.E., Brodie, M.L., Chakravarthy, S., Dayal,
U., Kamel, N., Schlageter, G., Whang, K.Y., eds.: Proceedings of the 26th Inter-
national Conference on Very Large Data Bases, Cario, Egypt, Morgan Kaufmann
(2000) 53–63

7. Diao, Y., Fischer, P., Franklin, M., To, R.: YFilter: efficient and scalable filtering
of XML documents. [15]

8. Chan, C.Y., Felber, P., Garofalakis, M.N., Rastogi, R.: Efficient fltering of XML
documents with XPath expressions. [15]

9. Gupta, A.K., Suciu, D.: Stream processing of XPath queries with predicates. In:
SIGMOD Conference, San Diego, CA, ACM (2003) 419–430

10. Lee, M.L., Chua, B.C., Hsu, W., Tan, K.L.: Efficient evaluation of multiple queries
on streaming XML data. In: Eleventh International Conference on Information
and Knowledge Management, McLean, Virginia, USA (November 4–9, 2002)

11. Fegaras, L., Levine, D., Bose, S., Chaluvadi, V.: Query processing of streamed
XML data. In: Eleventh International Conference on Information and Knowledge
Management (CIKM 2002), McLean, Virginia, USA (November 4–9, 2002)

12. Huo, H., Wang, G., Hui, X., Zhou, R., Ning, B., Xiao, C.: Efficient query processing
for streamed XML fragments. In: The 11th International Conference on Database
Systems for Advanced Applications, Singapore (April 12–15,2006)

13. Huo, H., Hui, X., Wang, G.: Document fragmentation for XML streams based on
hole-filler model. In: 2005 China National Computer Conference, Wu Han, China
(October 13–15,2005)

14. Diaz, A.L., Lovell, D.: XML Generator. (1999) http://www.alphaworks.ibm.com/
tech/xmlgenerator.

15. Proceedings of the the 2002 International Conference on Data Engineering. In:
ICDE Conference, San Jose, California, USA (2002)

